Mind computation / Zhongzhi Shi, Chinese Academy of Sciences, China.

Author
Shi, Zhongzhi [Browse]
Format
Book
Language
English
Published/​Created
New Jersey : World Scientific, [2017]
Description
xx, 468 pages : illustrations ; 26 cm.

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Engineering Library - Stacks Q342 .S48 2017 Browse related items Request

    Details

    Subject(s)
    Series
    Summary note
    "Mind computation is a hot topic of intelligence science. It is explored by computing to explain the theoretical basis of human intelligence. Through long-term research, a mind model CAM (Consciousness and Memory) is proposed, which provides a general framework for brain-like intelligence and brain-like intelligent systems. This novel book centers on mind model CAM, systematically discusses the theoretical basis of mind computation in nine chapters. Because of its advanced progresses on brain-like intelligence, it is useful as a primary reference volume for professionals and graduate students in intelligence science, cognitive science and artificial intelligence."--Publisher's website.
    Bibliographic references
    Includes bibliographical references and index.
    Contents
    • Machine generated contents note: 1.1.Mind
    • 1.2.Philosophy Issues of Mind
    • 1.3.Biological Basis of Mind
    • 1.4.Intelligence Science Issues of Mind
    • 1.4.1.Working mechanism of brain neural network
    • 1.4.2.Perception process and perception theory
    • 1.4.3.Memory
    • 1.4.4.Learning
    • 1.4.5.Cognitive mechanisms of language processing
    • 1.4.6.Cognitive mechanisms of thought
    • 1.4.7.Intelligence development
    • 1.4.8.Emotion system
    • 1.4.9.Consciousness
    • 1.4.10.Mind model
    • 1.5.The Structure of Mind
    • 1.6.The Modularity of Mind
    • 1.7.The Society of Mind
    • 1.8.Automata Theory
    • 1.8.1.Overview
    • 1.8.1.1.Abstract theory
    • 1.8.1.2.Structure theory
    • 1.8.1.3.Self-organization theory
    • 1.8.2.Finite state automata (FSA)
    • 1.8.3.Probabilistic automata
    • 1.8.4.Cellular automata (CA)
    • 1.9.Turing Machine
    • 1.10.Computational Theory of Mind
    • 2.1.Introduction
    • 2.2.Criteria of Mind Modeling
    • 2.2.1.Agile action
    • 2.2.2.Real-time
    • 2.2.3.Adaptive behavior
    • Note continued: 2.2.4.Large-scale knowledge base
    • 2.2.5.Dynamic action
    • 2.2.6.Knowledge integration
    • 2.2.7.Natural language
    • 2.2.8.Consciousness
    • 2.2.9.Learning
    • 2.2.10.Development
    • 2.2.11.Evolution
    • 2.2.12.Brain
    • 2.3.Cognitive Mind Modeling
    • 2.3.1.Physical symbol system
    • 2.3.2.ACT-R
    • 2.3.3.Soar
    • 2.4.Connectionism-based Mind Modeling
    • 2.4.1.Connectionism
    • 2.4.1.1.Large-scale parallel processing
    • 2.4.1.2.Content-based addressing
    • 2.4.1.3.Distributed storage
    • 2.4.1.4.Adaptability
    • 2.4.1.5.Fault tolerance
    • 2.4.2.Adaptive Resonance Theory
    • 2.5.Agent Mind Modeling
    • 2.6.CAM Architecture
    • 2.7.CAM Cognitive Cycle
    • 2.7.1.Perception phase
    • 2.7.2.Motivation phase
    • 2.7.3.Action planning phase
    • 3.1.Overview
    • 3.2.Basis of the DDL
    • 3.2.1.Notations
    • 3.2.2.Semantics of the DDL
    • 3.2.3.Inference in the DDL
    • 3.3.Long-term Memory
    • 3.3.1.Semantic memory
    • 3.3.1.1.Hierarchical network model
    • Note continued: 3.3.1.2.Spreading activation model
    • 3.3.1.3.Set theoretic model
    • 3.3.1.4.Feature comparison model
    • 3.3.1.5.Human association memory
    • 3.3.1.6.ELINOR model
    • 3.3.1.7.Ontology memory model
    • 3.3.2.Episodic memory
    • 3.3.3.Procedural memory
    • 3.4.Short-term Memory
    • 3.4.1.Short-term memory encoding
    • 3.4.2.Information extraction
    • 3.4.2.1.The classical research by Sternberg
    • 3.4.2.2.Direct access model
    • 3.4.2.3.Dual model
    • 3.4.3.Short-term memory in CAM
    • 3.4.3.1.Belief
    • 3.4.3.2.Target
    • 3.4.3.3.Intention
    • 3.5.Working Memory
    • 3.5.1.Models of working memory
    • 3.5.2.Working memory and reasoning
    • 3.5.3.Neural mechanism of working memory
    • 3.6.Theory of Forgetting
    • 3.7.Physiological Mechanism of Memory
    • 3.8.Theory of Memory-Prediction
    • 3.8.1.Constant characterization
    • 3.8.2.Structure of cerebral cortex
    • 3.8.3.How does the cerebral cortex work
    • 4.1.Overview
    • 4.1.1.Base elements of consciousness
    • Note continued: 4.1.2.The attribute of consciousness
    • 4.2.Theory of Consciousness
    • 4.2.1.The theater of consciousness
    • 4.2.2.Reductionism
    • 4.2.3.Theory of neuronal group selection
    • 4.2.4.Quantum theories
    • 4.2.5.Block model of consciousness
    • 4.2.6.Information integration theory
    • 4.3.Attention
    • 4.3.1.Attention functions
    • 4.3.2.Selective attention
    • 4.3.3.Attention distribution
    • 4.3.4.Attention system
    • 4.4.Metacognition
    • 4.4.1.Metacognitive knowledge
    • 4.4.2.Metacognitive experience
    • 4.4.3.Metacognitive monitoring
    • 4.4.4.Metacognition training
    • 4.5.Motivation
    • 4.5.1.Overview
    • 4.5.2.Theory of motivation
    • 4.6.Consciousness Subsystem in CAM
    • 4.6.1.Awareness module
    • 4.6.2.Attention module
    • 4.6.3.Global workspace module
    • 4.6.4.Motivation module
    • 4.6.5.Metacognitive module
    • 4.6.6.Introspective learning module
    • 5.1.Visual Cortex Area
    • 5.2.Visual Computation Theory
    • 5.2.1.Mares visual computation theory
    • Note continued: 5.2.2.Gestalt vision theory
    • 5.2.3.Dual visual pathway
    • 5.2.4.Topological vision theory
    • 5.3.Feature Binding
    • 5.3.1.Temporal synchronization theory
    • 5.3.2.Formal model of feature binding
    • 5.3.3.Feature integration theory
    • 5.3.4.Neural network model
    • 5.4.Object Recognition
    • 5.4.1.Visual representation
    • 5.4.2.Object low-level feature extraction
    • 5.4.3.Relation encoding
    • 5.4.4.Learning recognition network
    • 5.4.5.Link search
    • 5.5.Visual Space Cognition
    • 5.6.Visual Effective Coding
    • 6.1.The Neural Structure of Motor Control
    • 6.2.Motor Cortex
    • 6.3.The Basal Ganglia
    • 6.4.Motor Control Pathway
    • 6.5.EEG Signal Analysis
    • 6.5.1.EEG signal sorting
    • 6.5.2.EEG signal analytical method
    • 6.6.Encoding Motor
    • 6.6.1.Overview
    • 6.6.2.Entropy encoding theory
    • 6.6.3.Bayesian neuronal population encoding
    • 6.6.4.Bayesian neuronal population decoding
    • 6.7.Brain-Computer Interface
    • 6.7.1.Overview
    • Note continued: 6.7.2.Brain-Computer interface technology
    • 6.7.3.P300 Brain-computer interface system
    • 6.8.Brain-Computer Integration
    • 7.1.Mental Lexicon
    • 7.2.Perceptual Analysis of Language Input
    • 7.2.1.Spoken language input
    • 7.2.2.Speech coding
    • 7.2.3.Rhythm perception
    • 7.2.4.Written input
    • 7.2.5.Word recognition
    • 7.2.6.Speech generation
    • 7.3.Chomsky's Formal Grammar
    • 7.3.1.Phrase structure grammar
    • 7.3.2.Context-sensitive grammar
    • 7.3.3.Context-free grammar (CFG)
    • 7.3.4.Regular grammar
    • 7.4.Augmented Transition Networks
    • 7.5.Conceptual Dependency Theory
    • 7.6.Language Understanding
    • 7.6.1.Overview
    • 7.6.2.Development stage
    • 7.6.3.Rule-based analysis method
    • 7.6.4.Statistical model based on Corpus
    • 7.6.5.Machine learning method
    • 7.7.Functional Area of Brain
    • 7.7.1.Classical function area
    • 7.7.2.Semantic-related functional area
    • 7.7.3.Phonological-related functional area
    • 7.7.4.Spelling-related functional area
    • Note continued: 7.7.5.Bilingual brain functional areas
    • 7.8.Neural Model of Language Understanding
    • 7.8.1.Aphasia
    • 7.8.2.Classical localization model
    • 7.8.3.Memory-integration-control model
    • 8.1.Introduction
    • 8.2.Reinforcement Learning
    • 8.2.1.RL model
    • 8.2.2.Q learning
    • 8.2.3.Partial observation reinforcement learning
    • 8.2.4.Motivated reinforcement learning (MRL)
    • 8.2.5.Reinforcement learning of Soar system
    • 8.3.Deep Learning
    • 8.3.1.Introduction
    • 8.3.2.Human brain visual mechanism
    • 8.3.3.Autoencoder
    • 8.3.4.Restricted Boltzmann machine
    • 8.3.5.Deep belief networks
    • 8.3.6.Convolutional neural networks
    • 8.4.Introspective Learning
    • 8.4.1.Introduction
    • 8.4.2.General model of introspection learning
    • 8.4.3.Meta-reasoning of introspection learning
    • 8.4.4.Failure classification
    • 8.4.5.Case-based reasoning in the introspective process
    • 8.5.Brain Cognitive Data Analysis
    • 8.5.1.Brain function imaging
    • Note continued: 8.5.2.Brain nerve semantics
    • 8.5.3.Brain functional connectivity analysis
    • 9.1.Overview
    • 9.2.Blue-Brain Project
    • 9.2.1.Brain neural network
    • 9.2.2.Cerebral cortex model
    • 9.2.3.Super computing simulation
    • 9.3.Human Brain Project of the EU
    • 9.3.1.Introduction
    • 9.3.2.Spike-timing-dependent plasticity
    • 9.3.3.Unified brain model
    • 9.4.The US Brain Project
    • 9.4.1.Human connectome project
    • 9.4.2.MoNETA
    • 9.4.3.Neurocore chip
    • 9.4.4.HP memristor
    • 9.5.Brain Simulation System Spaun
    • 9.6.Neuromorphic Chip
    • 9.6.1.The development history of neuromorphic chip
    • 9.6.2.IBM's TrueNorth neuromorphic system
    • 9.6.3.British SpiNNaker
    • 9.7.Development Roadmap of Intelligence Science
    • 9.7.1.Elementary brain-like computing
    • 9.7.2.Advanced brain-like computing
    • 9.7.3.Super-brain computing.
    ISBN
    • 9789813145801 ((hc ; : alk. paper))
    • 9813145803 ((hc ; : alk. paper))
    LCCN
    2016032985
    OCLC
    953792598
    Statement on language in description
    Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
    Other views
    Staff view

    Supplementary Information