Recent developments in forward osmosis processes / edited by Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder.

Format
Book
Language
English
Published/​Created
London : IWA Publishing, 2017.
Description
xxiv, 374 pages : colour illustrations, colour maps ; 24 cm

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Engineering Library - Stacks TD442.5 .R43 2017 Browse related items Request

    Details

    Subject(s)
    Editor
    Notes
    "An overview of applications, advantages, challenges, costs and current knowledge gaps"--Back cover.
    Bibliographic references
    Includes bibliographical references and index.
    Contents
    • Note continued: 7.3.2.2. Indirect desalination
    • 7.3.3. Impaired-Quality Water Treatment and Reuse Applications
    • 7.3.3.1. Water harvesting from municipal wastewater
    • 7.3.3.2. Industrial wastewater reclamation and reuse
    • 7.3.3.3. Other applications for impaired-quality water treatment
    • 7.3.4. Energy and Economics of FO Systems
    • 7.3.5. Pressure Retarded Osmosis: Special FO Application for Energy Recovery in Water Industry
    • 7.3.5.1. Generating power with PRO
    • 7.3.5.2. Large-scale applications of PRO
    • 7.3.5.3. PRO membranes
    • 7.3.6. Major Challenges for Commercialization
    • 7.3.7. Summary
    • 7.3.8. References.
    • Machine generated contents note: ch. 1.1 Population distribution and water scarcity
    • 1.1.1. Osmotic Membrane Processes
    • 1.1.2. Forward Osmosis (FO)
    • 1.1.3. FO System for Wastewater Recovery and Seawater Desalination
    • 1.1.4. Concentration Polarization in FO Membranes
    • 1.1.5. FO Membrane Fouling
    • 1.1.6. Energy Demand in Desalination and Water Treatment Processes
    • 1.1.7. Scope and Outline
    • 1.1.8. References
    • ch. 2.1 management of urban runoff in coastal regions
    • 2.1.1. Introduction
    • 2.1.2. Materials and Methods
    • 2.1.2.1. Synthetic urban runoff and seawater
    • 2.1.2.2. FO membrane and simulated osmotic detention pond
    • 2.1.2.3. Analytical methods
    • 2.1.3. Results and Discussion
    • 2.1.3.1. Effects of feed water condition on flux patterns
    • 2.1.3.2. Salt leakage and NOM fouling
    • 2.1.3.3. Rejection of trace metals and nutrients
    • 2.1.3.4. Environmental and economic implications
    • 2.1.4. Summary
    • 2.1.5. References
    • ch. 2.2 Water harvesting from municipal wastewater
    • 2.2.1. Introduction
    • 2.2.2. Experimental
    • 2.2.2.1. Feed water and draw solution
    • 2.2.2.2. FO membrane and experimental set-up
    • 2.2.2.3. Analytical methods
    • 2.2.3. Results and Discussion
    • 2.2.3.1. Flux patterns
    • 2.2.3.2. Salt leakage and retention of nutrients and trace metals
    • 2.2.3.3. Fouling characterization and osmotic backwash
    • 2.2.4. Summary
    • 2.2.5. References
    • ch. 2.3 Indirect desalination of seawater
    • 2.3.1. Introduction
    • 2.3.2. Materials, Methods and Experimental
    • 2.3.2.1. Membranes and equipment
    • 2.3.2.2. Draw solution and feed water
    • 2.3.2.3. Experimental protocol
    • 2.3.3. Theoretical Background
    • 2.3.4. Results and Discussion
    • 2.3.4.1. Feed water and draw solution characterization
    • 2.3.4.2. Long-term forward osmosis experiments
    • 2.3.5. Energy, Cost and Water Reuse Considerations
    • 2.3.5.1. Comparison of energy use
    • 2.3.5.2. Cost analysis
    • 2.3.5.3. Alternative water reuse of diluted draw solutions
    • 2.3.6. Summary
    • 2.3.7. References
    • ch. 3.1 Fouling propensity during desalination of seawater
    • 3.1.1. Introduction
    • 3.1.2. Materials and Methods
    • 3.1.2.1. Feed and draw solution
    • 3.1.2.2. Forward osmosis set-up and fouling tests
    • 3.1.2.3. Analytical methods
    • 3.1.3. Results and Discussion
    • 3.1.3.1. Flux patterns during FO
    • 3.1.3.2. Identification of major foulants
    • 3.1.3.3. Salt and foulant rejection
    • 3.1.4. Summary
    • 3.1.5. References
    • ch. 3.2 NOM and TEP fouling
    • 3.2.1. Introduction
    • 3.2.2. Experimental
    • 3.2.2.1. FO membranes and cell configuration
    • 3.2.2.2. Water samples
    • 3.2.2.3. FO membrane fouling procedure
    • 3.2.2.4. NOM characterization
    • 3.2.2.5. FO membrane cleaning
    • 3.2.3. Results and Discussion
    • 3.2.3.1. FO membrane process
    • 3.2.3.2. Fouling of the active layer of FO membrane
    • 3.2.3.3. Fouling of the support layer of FO membrane
    • 3.2.3.4. Cleaning of the FO membrane-active layer
    • 3.2.3.5. Cleaning of the FO membrane-support layer
    • 3.2.4. Summary
    • 3.2.5. References
    • ch. 3.3 Draw solute induced calcium carbonate scaling
    • 3.3.1. Introduction
    • 3.3.2. Materials and Methods
    • 3.3.2.1. FS, DS and FO set-up
    • 3.3.2.2. FO membrane, and the measurement of intrinsic permeability and separation properties
    • 3.3.2.3. Experimental protocol for FO testing
    • 3.3.2.4. Analytical methods
    • 3.3.3. Results and Discussion
    • 3.3.3.1. Characterization of FO membrane
    • 3.3.3.2. Water and reverse solute flux
    • 3.3.3.3. Characterization of scaling in seawater desalination using NH3/CO2 FO process
    • 3.3.3.4. Reversibility of scaling and recovery of permeate water flux by hydraulic flushing
    • 3.3.3.5. Mechanism of scaling formation in seawater desalination using NH3/CO2 FO process
    • 3.3.4. Summary
    • 3.3.5. References
    • ch. 3.4 Impact of spacer thickness on biofouling in forward osmosis
    • 3.4.1. Introduction
    • 3.4.2. Materials and Methods
    • 3.4.2.1. Membrane, spacers and cell configuration
    • 3.4.2.2. Water sources
    • 3.4.2.3. Biofilm formation
    • 3.4.2.4. Analytical methods
    • 3.4.3. Results
    • 3.4.3.1. Effect of spacer thickness on performance
    • 3.4.3.2. Effect of spacer thickness on biomass accumulation
    • 3.4.3.3. Effect of spacer thickness on fouling localization
    • 3.4.3.4. Effect of spacer thickness on fouling composition
    • 3.4.4. Discussion
    • 3.4.4.1. Thickest spacer provides the best performance
    • 3.4.4.2. FO and RO show similar biofouling patterns
    • 3.4.4.3. Future studies
    • 3.4.5. Summary
    • 3.4.6. References
    • ch. 3.5 Effect of cleaning methods to remove organic fouling
    • 3.5.1. Introduction
    • 3.5.2. Materials and Methods
    • 3.5.3. Results
    • 3.5.4. Summary
    • 3.5.5. References
    • ch. 4.1 Rejection of micropollutants by FO membranes
    • 4.1.1. Introduction
    • 4.1.2. Materials and Methods
    • 4.1.2.1. FO membrane
    • 4.1.2.2. RO membrane
    • 4.1.2.3. Source waters
    • 4.1.2.4. Experimental setup and procedure
    • 4.1.2.5. Micropollutants stock preparation and analyses
    • 4.1.2.6. FO membrane characterization
    • 4.1.3. Results and Discussion
    • 4.1.3.1. Zeta potential and contact angle
    • 4.1.3.2. Rejection of micropollutants by FO
    • 4.1.4. Summary
    • 4.1.5. References
    • ch. 4.2 Rejection of boron
    • 4.2.1. Introduction
    • 4.2.2. Materials and Methods
    • 4.2.2.1. FO Membranes
    • 4.2.2.2. Experimental setup and procedure
    • 4.2.3. Results and Discussion
    • 4.2.3.1. Membrane characterization
    • 4.2.3.2. Membrane performance
    • 4.2.3.3. Boron flux
    • 4.2.4. Summary
    • 4.2.5. References
    • ch. 5.1 Draw solution
    • 5.1.1. Introduction
    • 5.1.2. Fundamentals of FO Processes
    • 5.1.3. Ideal Draw Solution for the FO Process
    • 5.1.4. Literature Review About Draw Solutions
    • 5.1.4.1. Commercially available compounds as draw solutes
    • 5.1.4.2. Synthetic materials as draw solutes
    • 5.1.5. Applications of Typical Draw Solutions in Integrated FO Processes
    • 5.1.5.1. Seawater desalination
    • 5.1.5.2. Wastewater reclamation
    • 5.1.5.3. Protein enrichment
    • 5.1.5.4. Power regeneration
    • 5.1.6. Challenges and Prospects for the Future
    • 5.1.7. Summary
    • 5.1.8. Nomenclature
    • 5.1.8.1. Greek symbols
    • 5.1.9. References
    • ch. 5.2 Cellulose acetate membrane: minimized internal concentration polarization
    • 5.2.1. Introduction
    • 5.2.2. Experimental
    • 5.2.2.1. Materials
    • 5.2.2.2. Membrane preparation
    • 5.2.2.3. Forward osmosis and fouling tests
    • 5.2.2.4. Pure water permeability, salt rejection and salt permeability tests
    • 5.2.2.5. Pore size and pore size distribution
    • 5.2.2.6. Water contact angle
    • 5.2.2.7. Porosity P
    • 5.2.2.8. Field emission scanning electronic microscopy (FESEM)
    • 5.2.2.9. Atomic force microscope (AFM)
    • 5.2.2.10. Positron annihilation spectroscopy (PAS)
    • 5.2.3. Results and Discussion
    • 5.2.3.1. Morphology influenced by different substrates and phase inversion conditions
    • 5.2.3.2. Morphology characterized by PALS
    • 5.2.3.3. Pore size and pore size distribution
    • 5.2.3.4. PWP, NaCI rejection and FO performance of different membranes
    • 5.2.3.5. Modeling of FO performance and structural parameter St
    • 5.2.3.6. Single vs. double dense-layer structure in the FO-MBR integrated system
    • 5.2.4. Summary
    • 5.2.5. References
    • ch. 6.1 Modeling water flux
    • 6.1.1. Introduction
    • 6.1.2. Governing Equations for Permeate Flux
    • 6.1.2.1. External concentration polarization
    • 6.1.2.2. Internal concentration polarization
    • 6.1.2.3. Model parameters
    • 6.1.3. Results and Discussion
    • 6.1.3.1. Dense symmetric membrane
    • 6.1.3.2. Asymmetric membrane in PRO mode
    • 6.1.3.3. Asymmetric membrane in FO mode
    • 6.1.3.4. Implications for improved membrane design
    • 6.1.4. Summary
    • 6.1.5. References
    • ch. 6.2 Biofouling in FO systems: an experimental and numerical study
    • 6.2.1. Introduction
    • 6.2.2. Experimental
    • 6.2.2.1. Experimental setup
    • 6.2.2.2. Model description
    • 6.2.3. Results and Discussion
    • 6.2.3.1. Evaluation of the forward osmosis model
    • 6.2.3.2. Biofilm effect on FO performance
    • 6.2.4. Summary
    • 6.2.5. References
    • ch. 7.1 Emerging applications for greater sustainability
    • 7.1.1. Introduction
    • 7.1.2. Osmotic Dilution for Energy Conservation
    • 7.1.3. Osmosis Engineered for Protection of the Environment
    • 7.1.4. Membranes at Sea: Fuel from Waste
    • 7.1.5. Osmotic Augmentation of Water Resources for Agriculture
    • 7.1.6. Outlook
    • 7.1.7. Summary
    • 7.1.8. References
    • ch. 7.2 Life Cycle Cost Assessment
    • 7.2.1. Introduction
    • 7.2.2. Methodology
    • 7.2.2.1. Life cycle cost methodology
    • 7.2.2.2. Technologies analyzed
    • 7.2.2.3. OPEX and CAPEX calculations
    • 7.2.3. Results and Discussion
    • 7.2.3.1. Life cycle cost analysis and sensitivity evaluation
    • 7.2.3.2. Biogas production
    • 7.2.3.3. Water quality versus public perception
    • 7.2.3.4. Wastewater recovery and reuse: successful projects
    • 7.2.3.5. Co-location
    • 7.2.4. Summary
    • 7.2.5. References
    • ch. 7.3 Niches in seawater desalination and wastewater reuse
    • 7.3.1. Introduction
    • 7.3.1.1. Increasing need for fresh water along coasts
    • 7.3.1.2. Current membrane systems in the water industry: reverse osmosis
    • 7.3.1.3. Forward osmosis hybrid systems: an opportunity
    • 7.3.2. Desalination Applications
    • 7.3.2.1. Direct desalination.
    ISBN
    • 9781780408118 ((paperback))
    • 1780408110 ((paperback))
    OCLC
    991530654
    International Article Number
    • 9781780408118
    Statement on language in description
    Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
    Other views
    Staff view