Galactic dynamics / James Binney and Scott Tremaine.

Author
Binney, James, 1950- [Browse]
Format
Book
Language
English
Εdition
2nd ed.
Published/​Created
Princeton : Princeton University Press, ©2008.
Description
xvi, 885 pages, [16] pages of plates : illustrations (some color) ; 24 cm.

Availability

Available Online

Copies in the Library

Location Call Number Status Location Service Notes
Lewis Library - Course Reserve QB857 .B524 2008 Browse related items Request
    Lewis Library - Stacks QB857 .B524 2008 Browse related items Request
      Lewis Library - Stacks QB857 .B524 2008 Browse related items Request
        Lewis Library - Stacks QB857 .B524 2008 Browse related items Request

          Details

          Subject(s)
          Series
          Princeton series in astrophysics [More in this series]
          Summary note
          An authoritative introduction to galactic astrophysics for advanced undergraduate students, graduate students, and researchers, this second edition has been updated with advances in the subject since the 1987 edition.
          Bibliographic references
          Includes bibliographical references (pages 842-856) and index.
          Contents
          • 1.1 An overview of the observations 5
          • Stars 5
          • The Galaxy 11
          • Other galaxies 19
          • Elliptical galaxies 20
          • Spiral galaxies 25
          • Lenticular galaxies 28
          • Irregular galaxies 28
          • Open and globular clusters 29
          • Groups and clusters of galaxies 30
          • Black holes 32
          • 1.2 Collisionless systems and the relaxation time 33
          • The relaxation time 34
          • 1.3 The cosmological context 37
          • Kinematics 38
          • Geometry 39
          • Dynamics 40
          • The Big Bang and inflation 45
          • The cosmic microwave background 48
          • 2 Potential Theory 55
          • 2.1 General results 56
          • The potential-energy tensor 59
          • 2.2 Spherical systems 60
          • Newton's theorems 60
          • Potential energy of spherical systems 63
          • Potentials of some simple systems 63
          • Point mass 63
          • Homogeneous sphere 63
          • Plummer model 65
          • Isochrone potential 65
          • Modified Hubble model 66
          • Power-law density model 68
          • Two-power density models 70
          • 2.3 Potential-density pairs for flattened systems 72
          • Kuzmin models and generalizations 72
          • Logarithmic potentials 74
          • Poisson's equation in very flattened systems 77
          • 2.4 Multipole expansion 78
          • 2.5 The potentials of spheroidal and ellipsoidal systems 83
          • Potentials of spheroidal shells 84
          • Potentials of spheroidal systems 87
          • Potentials of ellipsoidal systems 94
          • Ferrers potentials 95
          • Potential-energy tensors of ellipsoidal systems 95
          • 2.6 The potentials of disks 96
          • Disk potentials from homoeoids 96
          • The Mestel disk 99
          • The exponential disk 100
          • Thick disks 102
          • Disk potentials from Bessel functions 103
          • Application to axisymmetric disks 106
          • Disk potentials from logarithmic spirals 107
          • Disk potentials from oblate spheroidal coordinates 109
          • 2.7 The potential of our Galaxy 110
          • The bulge 111
          • The dark halo 112
          • The stellar disk 112
          • The interstellar medium 112
          • The bulge as a bar 117
          • 2.8 Potentials from functional expansions 118
          • Bi-orthonormal basis functions 120
          • Designer basis functions 120
          • 2.9 Poisson solvers for N-body codes 122
          • Direct summation 123
          • Softening 123
          • Tree codes 125
          • Cartesian multipole expansion 127
          • Particle-mesh codes 129
          • Periodic boundary conditions 131
          • Vacuum boundary conditions 132
          • Mesh refinement 135
          • P[superscript 3]M codes 135
          • Spherical-harmonic codes 136
          • Simulations of planar systems 137
          • 3 The Orbits of Stars 142
          • 3.1 Orbits in static spherical potentials 143
          • Spherical harmonic oscillator 147
          • Kepler potential 147
          • Isochrone potential 149
          • Hyperbolic encounters 153
          • Constants and integrals of the motion 155
          • 3.2 Orbits in axisymmetric potentials 159
          • Motion in the meridional plane 159
          • Surfaces of section 162
          • Nearly circular orbits: epicycles and the velocity ellipsoid 164
          • 3.3 Orbits in planar non-axisymmetric potentials 171
          • Two-dimensional non-rotating potential 171
          • Two-dimensional rotating potential 178
          • Weak bars 188
          • Lindblad resonances 188
          • Orbits trapped at resonance 193
          • 3.4 Numerical orbit integration 196
          • Symplectic integrators 197
          • Modified Euler integrator 197
          • Leapfrog integrator 200
          • Runge-Kutta and Bulirsch-Stoer integrators 201
          • Multistep predictor-corrector integrators 202
          • Multivalue integrators 203
          • Adaptive timesteps 205
          • Individual timesteps 206
          • Regularization 208
          • Burdet-Heggie regularization 208
          • Kustaanheimo-Stiefel (KS) regularization 210
          • 3.5 Angle-action variables 211
          • Orbital tori 212
          • Time averages theorem 215
          • Action space 216
          • Hamilton-Jacobi equation 217
          • Angle-action variables for spherical potentials 220
          • Angle-action variables for flattened axisymmetric potentials 226
          • Stackel potentials 226
          • Epicycle approximation 231
          • Angle-action variables for a non-rotating bar 234
          • 3.6 Slowly varying potentials 237
          • Adiabatic invariance of actions 237
          • Applications 238
          • Harmonic oscillator 238
          • Eccentric orbits in a disk 240
          • Transient perturbations 240
          • Slow growth of a central black hole 241
          • 3.7 Perturbations and chaos 243
          • Hamiltonian perturbation theory 243
          • Trapping by resonances 246
          • Levitation 250
          • From order to chaos 253
          • Irregular orbits 256
          • Frequency analysis 258
          • Liapunov exponents 260
          • 3.8 Orbits in elliptical galaxies 262
          • The perfect ellipsoid 263
          • Dynamical effects of cusps 263
          • Dynamical effects of black holes 266
          • 4 Equilibria of Collisionless Systems 274
          • 4.1 The collisionless Boltzmann equation 275
          • Limitations of the collisionless Boltzmann equation 278
          • Finite stellar lifetimes 278
          • Correlations between stars 279
          • Relation between the DF and observables 280
          • 4.2 Jeans theorems 283
          • Choice of f and relations between moments 285
          • DF depending only on H 285
          • DF depending on H and L 286
          • DF depending on H and L[subscript z] 286
          • 4.3 DFs for spherical systems 287
          • Ergodic DFs for systems 288
          • Ergodic Hernquist, Jaffe and isochrone models 290
          • Differential energy distribution 292
          • DFs for anisotropic spherical systems 293
          • Models with constant anisotropy 294
          • Osipkov-Merritt models 297
          • Other anisotropic models 298
          • Differential-energy distribution for anisotropic systems 299
          • Spherical systems defined by the DF 299
          • Polytropes and the Plummer model 300
          • The isothermal sphere 302
          • Lowered isothermal models 307
          • Double-power models 311
          • Michie models 312
          • 4.4 DFs for axisymmetric density distributions 312
          • DF for a given axisymmetric system 312
          • Axisymmetric systems specified by f(H, L[subscript z]) 314
          • Fully analytic models 314
          • Rowley models 318
          • Rotation and flattening in spheroids 320
          • The Schwarzschild DF 321
          • 4.5 DFs for razor-thin disks 329
          • Mestel disk 329
          • Kalnajs disks 330
          • 4.6 Using actions as arguments of the DF 333
          • Adiabatic compression 335
          • Cusp around a black hole 336
          • Adiabatic deformation of dark matter 337
          • 4.7 Particle-based and orbit-based models 338
          • N-body modeling 339
          • Softening 341
          • Instability and chaos 341
          • Schwarzschild models 344
          • 4.8 The Jeans and virial equations 347
          • Jeans equations for spherical systems 349
          • Effect of a central black hole on the observed velocity dispersion 350
          • Jeans equations for axisymmetric systems 353
          • Asymmetric drift 354
          • Spheroidal components with isotropic velocity dispersion 356
          • Virial equations 358
          • Scalar virial theorem 360
          • Spherical systems 361
          • The tensor virial theorem and observational data 362
          • 4.9 Stellar kinematics as a mass detector 365
          • Detecting black holes 366
          • Extended mass distributions of elliptical galaxies 370
          • Dynamics of the solar neighborhood 372
          • 4.10 The choice of equilibrium 376
          • The principle of maximum entropy 377
          • Phase mixing and violent relaxation 379
          • Phase mixing 379
          • Violent relaxation 380
          • Numerical simulation of the relaxation process 382
          • 5 Stability of Collisionless Systems 394
          • Linear response theory 396
          • Linearized equations for stellar and fluid systems 398
          • 5.2 The response of homogeneous systems 401
          • Physical basis of the Jeans instability 401
          • Homogeneous systems and the Jeans swindle 401
          • The response of a homogeneous fluid system 403
          • The response of a homogeneous stellar system 406
          • Unstable solutions 410
          • Neutrally stable solutions 411
          • Damped solutions 412
          • 5.3 General theory of the response of stellar systems 417
          • The polarization function in angle-action variables 418
          • The Kalnajs matrix method 419
          • The response matrix 421
          • 5.4 The energy principle and secular stability 423
          • The energy principle for fluid systems 423
          • The energy principle for stellar systems 427
          • The relation between the stability of fluid and stellar systems 431
          • 5.5 The response of spherical systems 432
          • The stability of spherical systems with ergodic DFs 432
          • The stability of anisotropic spherical systems 433
          • Physical basis of the radial-orbit instability 434
          • Landau damping and resonances in spherical systems 437
          • 5.6 The stability of uniformly rotating systems 439
          • The uniformly rotating sheet 439
          • Kalnajs disks 444
          • Maclaurin spheroids and disks 449
          • 6 Disk Dynamics and Spiral Structure 456
          • 6.1 Fundamentals of spiral structure 458
          • Images of spiral galaxies 460
          • Spiral arms at other wavelengths 462
          • Dust 464
          • Relativistic electrons 465
          • Molecular gas 465
          • Neutral atomic gas 465
          • HII regions 467
          • The geometry of spiral arms 468
          • The strength and number of arms 468
          • Leading and trailing arms 469
          • The pitch angle and the winding problem 471
          • The pattern speed 474
          • The anti-spiral theorem 477
          • Angular-momentum transport by spiral-arm torques 478
          • 6.2 Wave mechanics of differentially rotating disks 481
          • Kinematic density waves 481
          • Resonances 484
          • The dispersion relation for tightly wound spiral arms 485
          • The tight-winding approximation 485
          • Potential of a tightly wound spiral pattern 486
          • The dispersion relation for fluid disks 488
          • The dispersion relation for stellar disks 492
          • Local stability of differentially rotating disks 494
          • Long and short waves 497
          • Group velocity 499
          • Energy and angular momentum in spiral waves 503
          • 6.3 Global stability of differentially rotating disks 505
          • Numerical work on disk stability 505
          • Swing amplifier and feedback loops 508
          • The swing amplifier 508
          • Feedback loops 512.
          ISBN
          • 9780691130262 ((cloth ; : acid-free paper))
          • 0691130264 ((cloth ; : acid-free paper))
          • 9780691130279 ((paper ; : acid-free paper))
          • 0691130272 ((paper ; : acid-free paper))
          LCCN
          2007937669
          OCLC
          195749071
          Statement on language in description
          Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
          Other views
          Staff view

          Supplementary Information