Physics of the interstellar and intergalactic medium / Bruce T. Draine.

Author
Draine, Bruce T., 1947- [Browse]
Format
Book
Language
English
Published/​Created
  • Princeton, N.J. : Princeton University Press, ©2011.
  • ©2011
Description
xviii, 540 pages : illustrations (some color), maps ; 25 cm.

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Firestone Library - Faculty Publications QB790 .D73 2011 Browse related items Request
    Lewis Library - Course Reserve QB790 .D73 2011 Browse related items Request
      Lewis Library - Stacks QB790 .D73 2011 Browse related items Request
        Lewis Library - Stacks QB790 .D73 2011 Browse related items Request
          Lewis Library - Stacks QB790 .D73 2011 Browse related items Request

            Details

            Subject(s)
            Library of Congress genre(s)
            Series
            Princeton series in astrophysics [More in this series]
            Summary note
            This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. Essential textbook on the physics of the interstellar and intergalactic medium Based on a course taught by the author for more than twenty years at Princeton University Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium Reviews diagnostics using emission and absorption lines Features color illustrations and detailed reference materials in appendices Instructor's manual with problems and solutions (available only to teachers).
            Bibliographic references
            Includes bibliographical references and index.
            Contents
            • Machine generated contents note: 1. Introduction
            • 1.1. Organization of the ISM: Characteristic Phases
            • 1.2. Elemental Composition
            • 1.3. Energy Densities
            • 2. Collisional Processes
            • 2.1. Collisional Rate Coefficients
            • 2.2. Inverse-Square Law Forces: Elastic Scattering
            • 2.3. Electron-Ion Inelastic Scattering: Collision Strength & omega;ul
            • 2.4. Ion-Neutral Collision Rates
            • 2.5. Electron-Neutral Collision Rates
            • 2.6. Neutral-Neutral Collision Rates
            • 3. Statistical Mechanics and Thermodynamic Equilibrium
            • 3.1. Partition Functions
            • 3.2. Detailed Balance: The Law of Mass Action
            • 3.3. Ionization and Recombination
            • 3.4. Saha Equation
            • 3.5. Detailed Balance: Ratios of Rate Coefficients
            • 3.6. Detailed Balance: Ratios of Cross Sections
            • 3.7. Example: Three-Body Recombination
            • 3.8. Departure Coefficients
            • 4. Energy Levels of Atoms and Ions
            • 4.1. Single-Electron Orbitals
            • 4.2. Configurations
            • 4.3. Spectroscopic Terms
            • 4.4. Fine Structure: Spin-Orbit Interaction.
            • Preface xvii 1 Introduction 1(10) 1.1 Organization of the ISM: Characteristic Phases 4(5) 1.2 Elemental Composition 9(1) 1.3 Energy Densities 9(2) 2 Collisional Processes 11(11) 2.1 Collisional Rate Coefficients 11(1) 2.2 Inverse-Square Law Forces: Elastic Scattering 12(5) 2.3 Electron-Ion Inelastic Scattering: Collision Strength ωul 17(1) 2.4 Ion-Neutral Collision Rates 17(3) 2.5 Electron-Neutral Collision Rates 20(1) 2.6 Neutral-Neutral Collision Rates 21(1) 3 Statistical Mechanics and Thermodynamic Equilibrium 22(10) 3.1 Partition Functions 22(1) 3.2 Detailed Balance: The Law of Mass Action 23(1) 3.3 Ionization and Recombination 24(1) 3.4 Saha Equation 25(1) 3.5 Detailed Balance: Ratios of Rate Coefficients 26(1) 3.6 Detailed Balance: Ratios of Cross Sections 26(2) 3.7 Example: Three-Body Recombination 28(2) 3.8 Departure Coefficients 30(2) 4 Energy Levels of Atoms and Ions 32(6) 4.1 Single-Electron Orbitals 32(1) 4.2 Configurations 32(1) 4.3 Spectroscopic Terms 33(1) 4.4 Fine Structure: Spin-Orbit Interaction 34(1) 4.5 Designation of Energy Levels for Atoms and Ions: Spectroscopic Notation 34(2) 4.6 Hyperfine Structure: Interaction with Nuclear Spin 36(1) 4.7 Zeeman Effect 37(1) 4.8 Further Reading 37(1) 5 Energy Levels of Molecules 38(15) 5.1 Diatomic Molecules 38(9) 5.2 Energy Levels of Nonlinear Molecules 47(4) 5.3 Zeeman Splitting 51(1) 5.4 Further Reading 52(1) 6 Spontaneous Emission, Stimulated Emission, and Absorption 53(10) 6.1 Emission and Absorption of Photons 53(2) 6.2 Absorption Cross Section 55(1) 6.3 Oscillator Strength 56(1) 6.4 Intrinsic Line Profile 57(1) 6.5 Doppler Broadening: The Voigt Line Profile 58(1) 6.6 Transition from Doppler Core to Damping Wings 59(1) 6.7 Selection Rules for Radiative Transitions 60(3) 7 Radiative Transfer 63(7) 7.1 Physical Quantities 63(2) 7.2 Equation of Radiative Transfer 65(1) 7.3 Emission and Absorption Coefficients 66(1) 7.4 Integration of the Equation of Radiative Transfer 66(2) 7.5 Maser Lines 68(2) 8 HI 21-cm Emission and Absorption 70(5) 8.1 HI Emissivity and Absorption Coefficient 70(2) 8.2 Optically Thin Cloud 72(1) 8.3 Spin Temperature Determination Using Background Radio Sources 73(2) 9 Absorption Lines: The Curve of Growth 75(17) 9.1 Absorption Lines 75(2) 9.2 Optically Thin Absorption, τ0 <1 77(1) 9.3 Flat Portion of the Curve of Growth, 10 <τ0 <τdamp 77(2) 9.4 Damped Portion of the Curve of Growth, τ0> τdamp 79(2) 9.5 Approximation Formulae for W 81(1) 9.6 Doublet Ratio 81(2) 9.7 Lyman Series of Hydrogen: Ly α, Ly β, Ly γ 83(1) 9.8 Lyman Limit 84(1) 9.9 H2: Lyman and Werner Bands 85(1) 9.10 "Metal" Lines 86(4) 9.11 Abundances in HI Gas 90(2).
            • 4.5. Designation of Energy Levels for Atoms and Ions: Spectroscopic Notation
            • 4.6. Hyperfine Structure: Interaction with Nuclear Spin
            • 4.7. Zeeman Effect
            • 4.8. Further Reading
            • 5. Energy Levels of Molecules
            • 5.1. Diatomic Molecules
            • 5.2. Energy Levels of Nonlinear Molecules
            • 5.3. Zeeman Splitting
            • 5.4. Further Reading
            • 6. Spontaneous Emission, Stimulated Emission, and Absorption
            • 6.1. Emission and Absorption of Photons
            • 6.2. Absorption Cross Section
            • 6.3. Oscillator Strength
            • 6.4. Intrinsic Line Profile
            • 6.5. Doppler Broadening: The Voigt Line Profile
            • 6.6. Transition from Doppler Core to Damping Wings
            • 6.7. Selection Rules for Radiative Transitions
            • 7. Radiative Transfer
            • 7.1. Physical Quantities
            • 7.2. Equation of Radiative Transfer
            • 7.3. Emission and Absorption Coefficients
            • 7.4. Integration of the Equation of Radiative Transfer
            • 7.5. Maser Lines
            • 8. HI 21-cm Emission and Absorption
            • 8.1. HI Emissivity and Absorption Coefficient
            • 8.2. Optically Thin Cloud
            • 8.3. Spin Temperature Determination Using Background Radio Sources.
            • 9. Absorption Lines: The Curve of Growth
            • 9.1. Absorption Lines
            • 9.2. Optically Thin Absorption, & tau;0 <1
            • 9.3. Flat Portion of the Curve of Growth, 10 <& tau;0 <& tau;damp
            • 9.4. Damped Portion of the Curve of Growth, & tau;0> & tau;damp
            • 9.5. Approximation Formulae for W
            • 9.6. Doublet Ratio
            • 9.7. Lyman Series of Hydrogen: Ly & alpha;, Ly & beta;, Ly & gamma;
            • 9.8. Lyman Limit
            • 9.9. H2: Lyman and Werner Bands
            • 9.10. "Metal" Lines
            • 9.11. Abundances in HI Gas
            • 10. Emission and Absorption by a Thermal Plasma
            • 10.1. Free-Free Emission (Bremsstrahlung)
            • 10.2. Gaunt Factor
            • 10.3. Frequency-Averaged Gaunt Factor
            • 10.4. Free-Free Absorption
            • 10.5. Emission Measure
            • 10.6. Free-Bound Transitions: Recombination Continuum
            • 10.7. Radio Recombination Lines
            • 11. Propagation of Radio Waves through the ISM
            • 11.1. Dispersion Relation for Cold Plasmas
            • 11.2. Dispersion
            • 11.3. Faraday Rotation
            • 11.4. Refraction
            • 11.5. Scintillation
            • 11.6. Interstellar Electron Density Power Spectrum
            • 11.7. Extreme Scattering Events.
            • 12. Interstellar Radiation Fields
            • 12.1. Galactic Synchrotron Radiation
            • 12.2. Cosmic Microwave Background Radiation
            • 12.3. Free-Free Emission and Recombination Continuum
            • 12.4. Infrared Emission from Dust
            • 12.5. Starlight in an HI Region
            • 12.6. X Rays from Hot Plasma
            • 12.7. Radiation Field in a Photodissociation Region near a Hot Star
            • 13. Ionization Processes
            • 13.1. Photoionization
            • 13.2. Auger Ionization and X-Ray Fluorescence
            • 13.3. Secondary Ionizations
            • 13.4. Collisional Ionization
            • 13.5. Cosmic Ray Ionization
            • 14. Recombination of Ions with Electrons
            • 14.1. Radiative Recombination
            • 14.2. Radiative Recombination of Hydrogen
            • 14.3. Radiative Recombination: Helium
            • 14.4. Radiative Recombination: Heavy Elements
            • 14.5. Dielectronic Recombination
            • 14.6. Dissociative Recombination
            • 14.7. Charge Exchange
            • 14.8. Ion Neutralization by Dust Grains
            • 14.9. Ionization Balance in Collisionally Ionized Gas
            • 15. Photoionized Gas
            • 15.1. H II Regions as Stromgren Spheres
            • 15.2. Time Scales.
            • 15.3. Neutral Fraction within an H II Region
            • 15.4. Dusty H II Regions with Radiation Pressure
            • 15.5. Ionization of Helium and Other Elements
            • 15.6. Planetary Nebulae
            • 15.7. Escape of Lyman & alpha;
            • 15.8. Ionization by Power-Law Spectra
            • 16. Ionization in Predominantly Neutral Regions
            • 16.1. H I Regions: Ionization of Metals
            • 16.2. Cool H I Regions: Ionization of Hydrogen
            • 16.3. Warm H I Regions
            • 16.4. Diffuse Molecular Gas
            • 16.5. Dense Molecular Gas: Dark Clouds
            • 17. Collisional Excitation
            • 17.1. Two-Level Atom
            • 17.2. Critical Density nerit, u
            • 17.3. Example: HI Spin Temperature
            • 17.4. Example: CII Fine Structure Excitation
            • 17.5. Three-Level Atom
            • 17.6. Example: Fine Structure Excitation of CI and OI
            • 17.7. Measurement of Density and Pressure Using CI
            • 18. Nebular Diagnostics
            • 18.1. Temperature Diagnostics: Collisionally Excited Optical/UV Lines
            • 18.2. Density Diagnostics: Collisionally Excited Optical/UV Lines
            • 18.3. Density Diagnostics: Fine-Structure Emission Lines
            • 18.4. Other Diagnostic Methods.
            • 18.5. Abundance Determination from Collisionally Excited Lines
            • 18.6. Abundances from Optical Recombination Lines
            • 18.7. Ionization/Excitation Diagnostics: The BPT Diagram
            • 19. Radiative Trapping
            • 19.1. Escape Probability Approximation
            • 19.2. Homogeneous Static Spherical Cloud
            • 19.3. Example: CO J =I-O
            • 19.4. LVG Approximation: Hubble Flow
            • 19.5. Escape Probability for Turbulent Clouds
            • 19.6. CO I-O Emission as a Tracer of H2 Mass: CO "X-Factor"
            • 20. Optical Pumping
            • 20.1. UV Pumping by Continuum
            • 20.2. Infrared Pumping: OH
            • 20.3. UV Pumping by Line Coincidence: Bowen Fluorescence
            • 21. Interstellar Dust: Observed Properties
            • 21.1. Interstellar Extinction
            • 21.2. Parametric Fits to the Extinction Curve
            • 21.3. Polarization by Interstellar Dust
            • 21.4. Scattering of Starlight by Interstellar Dust
            • 21.5. Size Distribution of Interstellar Dust
            • 21.6. Purcell Limit: Lower Limit on Dust Volume
            • 21.7. Infrared Emission
            • 21.8. Luminescence
            • 22. Scattering and Absorption by Small Particles
            • 22.1. Cross Sections and Efficiency Factors.
            • 22.2. Dielectric Function and Refractive Index
            • 22.3. Electric Dipole Limit: Size <& lambda;
            • 22.4. Limiting Behavior at Long Wavelengths
            • 22.5. Sizes Comparable to Wavelength: Mie Theory
            • 22.6. Nonspherical Particles
            • 22.7. Interstellar Grains
            • 23. Composition of Interstellar Dust
            • 23.1. Abundance Constraints
            • 23.2. Presolar Grains in Meteorites
            • 23.3. Observed Spectral Features of Dust
            • 23.4. Silicates
            • 23.5. Polycyclic Aromatic Hydrocarbons
            • 23.6. Graphite
            • 23.7. Diamond
            • 23.8. Amorphous Carbons, Including Hydrogenated Amorphous Carbon
            • 23.9. Fullerenes
            • 23.10. Models for Interstellar Dust
            • 24. Temperatures of Interstellar Grains
            • 24.1. Heating and Cooling of "Classical" Dust Grains
            • 24.2. Heating and Cooling of Ultrasmall Dust Grains: Temperature Spikes
            • 24.3. Infrared Emission from Grains
            • 24.4. Collisionally Heated Dust
            • 25. Grain Physics: Charging and Sputtering
            • 25.1. Collisional Charging
            • 25.2. Photoelectric Emission
            • 25.3. Grain Charging in the Diffuse ISM
            • 25.4. Secondary Electron Emission.
            • 25.5. Electron Field Emission
            • 25.6. Ion Field Emission and Coulomb Explosions
            • 25.7. Sputtering in Hot Gas
            • 26. Grain Dynamics
            • 26.1. Translational Motion
            • 26.2. Rotational Motion
            • 26.3. Alignment of Interstellar Dust
            • 27. Heating and Cooling of H II Regions
            • 27.1. Heating by Photoionization
            • 27.2. Other Heating Processes
            • 27.3. Cooling Processes
            • 27.4. Thermal Equilibrium
            • 27.5. Emission Spectrum of an H II Region
            • 27.6. Observed Temperatures in H II Regions
            • 28. The Orion H II Region
            • 28.1. Trapezium Stars
            • 28.2. Distribution of Ionized Gas
            • 28.3. Orion Bar
            • 28.4. Gas Kinematics
            • 28.5. PIGS, Proplyds, and Shadows
            • 29. H I Clouds: Observations
            • 29.1. 21-cm Line Observations
            • 29.2. Distribution of the H I
            • 29.3. Zeeman Effect
            • 29.4. Optical and UV Absorption Line Studies
            • 29.5. Infrared Emission
            • 30. H I Clouds: Heating and Cooling
            • 30.1. Heating: Starlight, Cosmic Rays, X Rays, and MHD Waves
            • 30.2. Photoelectric Heating by Dust
            • 30.3. Cooling: [C II] 158 & mu;m, [OI] 63 & mu;m, and Other Lines.
            • 30.4. Two "Phases" for HI in the ISM
            • 30.5. Emission Spectrum of an HI Cloud
            • 31. Molecular Hydrogen
            • 31.1. Gas-Phase Formation of H2
            • 31.2. Grain Catalysis of H2
            • 31.3. Photodissociation of H2
            • 31.4. Self-Shielding
            • 31.5. Excitation of Vibration and Rotation by UV Pumping
            • 31.6. Rotational Level Populations
            • 31.7. Structure of a Photodissociation Region
            • 31.8. Dense PDRs
            • 32. Molecular Clouds: Observations
            • 32.1. Taxonomy and Astronomy
            • 32.2. Star Counts
            • 32.3. Molecular Radio Lines
            • 32.4. FIR Emission from Dust
            • 32.5. & gamma; rays
            • 32.6. Compact, Ultracompact, and Hypercompact HII Regions
            • 32.7. IR Point Sources
            • 32.8. Masers
            • 32.9. Size-Linewidth Relation in Molecular Clouds.
            • Note continued: 32.10. Magnetic Fields in Molecular Clouds
            • 32.11. Energy Dissipation in Molecular Clouds
            • 33. Molecular Clouds: Chemistry and Ionization
            • 33.1. Photoionization and Photodissociation of Molecules
            • 33.2. Ion-Molecule Chemistry in Cold Gas
            • 33.3. The CH+ Problem
            • 34. Physical Processes in Hot Gas
            • 34.1. Radiative Cooling
            • 34.2. Radiative Cooling Time
            • 34.3. Thermal Conduction
            • 34.4. Cloud Evaporation in Hot Gas
            • 34.5. Conduction Fronts
            • 35. Fluid Dynamics
            • 35.1. Mass Conservation
            • 35.2. Conservation of Momentum: MHD Navier-Stokes Equation
            • 35.3. Heating and Cooling
            • 35.4. Electrodynamics in a Conducting Fluid: Flux-Freezing
            • 35.5. Virial Theorem
            • 36. Shock Waves
            • 36.1. Sources of Interstellar Shocks
            • 36.2. Jump Conditions: Rankine-Hugoniot Relations
            • 36.3. Cooling Time and Cooling Length
            • 36.4. Collisionless Shocks.
            • 36.5. Electron Temperature
            • 36.6. Two-Fluid MHD Shocks in Low Fractional Ionization Gas
            • 37. Ionization/Dissociation Fronts
            • 37.1. Ionization Fronts: R-Type and D-Type
            • 37.2. Expansion of an HII Region in a Uniform Medium
            • 37.3. Photodissociation Fronts
            • 38. Stellar Winds
            • 38.1. Winds from Hot Stars: Stellar Wind Bubbles
            • 38.2. Winds from Cool Stars
            • 38.3. Stellar Wind Bow-Shock
            • 39. Effects of Supernovae on the ISM
            • 39.1. Evolution of a Supernova Remnant in a Uniform ISM
            • 39.2. Overlapping of SNRs
            • 39.3. Supernova Remnants in an Inhomogeneous Medium
            • 39.4. Three-Phase Model of the ISM
            • 40. Cosmic Rays and Gamma Rays
            • 40.1. Cosmic Ray Energy Spectrum and Composition
            • 40.2. Theory of Diffusive Shock Acceleration
            • 40.3. Injection Problem
            • 40.4. Upper Limits on Cosmic Ray Energy
            • 40.5. Cosmic Ray Propagation
            • 40.6. Synchrotron Emission and Supernova Remnants
            • 40.7. Gamma Ray Emission from Interstellar Clouds.
            • 40.8. 26 Al in the ISM
            • 40.9. Positrons and Positronium in the ISM
            • 41. Gravitational Collapse and Star Formation: Theory
            • 41.1. Gravitational Instability: Jeans Instability
            • 41.2. Parker Instability
            • 41.3. Insights from the Virial Theorem
            • 41.4. Magnetic Flux Problem: Ambipolar Diffusion
            • 41.5. Angular Momentum Problem
            • 41.6. Accretion Disks
            • 41.7. Radiation Pressure
            • 42. Star Formation: Observations
            • 42.1. Collapse of Cores to form Stars
            • 42.2. Class 0, I, II, and III Protostars
            • 42.3. Initial Mass Function
            • 42.4. Star Formation Rates
            • 42.5. Schrnidt-Kennicutt Law
            • Appendices
            • A. List of Symbols
            • B. Physical Constants
            • C. Summary of Radiative Processes
            • D. Ionization Potentials (eV)
            • E. Energy-Level Diagrams
            • F. Collisional Rate Coefficients
            • G. Semiclassical Atom
            • H. Debye Length for a Plasma
            • I. Heuristic Model for Ion-Electron Inelastic Scattering
            • J. Virial Theorem.
            • 10 Emission and Absorption by a Thermal Plasma 92(9) 10.1 Free-Free Emission (Bremsstrahlung) 92(1) 10.2 Gaunt Factor 93(2) 10.3 Frequency-Averaged Gaunt Factor 95(1) 10.4 Free-Free Absorption 95(1) 10.5 Emission Measure 96(1) 10.6 Free-Bound Transitions: Recombination Continuum 97(1) 10.7 Radio Recombination Lines 97(4) 11 Propagation of Radio Waves through the ISM 101(18) 11.1 Dispersion Relation for Cold Plasmas 101(1) 11.2 Dispersion 102(3) 11.3 Faraday Rotation 105(4) 11.4 Refraction 109(2) 11.5 Scintillation 111(2) 11.6 Interstellar Electron Density Power Spectrum 113(3) 11.7 Extreme Scattering Events 116(3) 12 Interstellar Radiation Fields 119(8) 12.1 Galactic Synchrotron Radiation 119(1) 12.2 Cosmic Microwave Background Radiation 120(1) 12.3 Free-Free Emission and Recombination Continuum 121(1) 12.4 Infrared Emission from Dust 121(2) 12.5 Starlight in an HI Region 123(2) 12.6 X Rays from Hot Plasma 125(1) 12.7 Radiation Field in a Photodissociation Region near a Hot Star 125(2) 13 Ionization Processes 127(10) 13.1 Photoionization 128(3) 13.2 Auger Ionization and X-Ray Fluorescence 131(1) 13.3 Secondary Ionizations 132(2) 13.4 Collisional Ionization 134(1) 13.5 Cosmic Ray Ionization 134(3) 14 Recombination of Ions with Electrons 137(25) 14.1 Radiative Recombination 137(1) 14.2 Radiative Recombination of Hydrogen 138(8) 14.3 Radiative Recombination: Helium 146(4) 14.4 Radiative Recombination: Heavy Elements 150(1) 14.5 Dielectronic Recombination 151(2) 14.6 Dissociative Recombination 153(1) 14.7 Charge Exchange 154(3) 14.8 Ion Neutralization by Dust Grains 157(2) 14.9 Ionization Balance in Collisionally Ionized Gas 159(3) 15 Photoionized Gas 162(20) 15.1 H II Regions as Stromgren Spheres 162(3) 15.2 Time Scales 165(1) 15.3 Neutral Fraction within an H II Region 166(1) 15.4 Dusty H II Regions with Radiation Pressure 167(5) 15.5 Ionization of Helium and Other Elements 172(3) 15.6 Planetary Nebulae 175(1) 15.7 Escape of Lyman α 176(4) 15.8 Ionization by Power-Law Spectra 180(2) 16 Ionization in Predominantly Neutral Regions 182(8) 16.1 H I Regions: Ionization of Metals 182(2) 16.2 Cool H I Regions: Ionization of Hydrogen 184(1) 16.3 Warm H I Regions 185(1) 16.4 Diffuse Molecular Gas 186(2) 16.5 Dense Molecular Gas: Dark Clouds 188(2) 17 Collisional Excitation 190(13) 17.1 Two-Level Atom 190(1) 17.2 Critical Density nerit, u 191(1) 17.3 Example: HI Spin Temperature 192(3) 17.4 Example: CII Fine Structure Excitation 195(2) 17.5 Three-Level Atom 197(1) 17.6 Example: Fine Structure Excitation of CI and OI 198(1) 17.7 Measurement of Density and Pressure Using CI 198(5) 18 Nebular Diagnostics 203(16) 18.1 Temperature Diagnostics: Collisionally Excited Optical/UV Lines 204(5) 18.2 Density Diagnostics: Collisionally Excited Optical/UV Lines 209(1) 18.3 Density Diagnostics: Fine-Structure Emission Lines 210(2) 18.4 Other Diagnostic Methods 212(2) 18.5 Abundance Determination from Collisionally Excited Lines 214(1) 18.6 Abundances from Optical Recombination Lines 215(1) 18.7 Ionization/Excitation Diagnostics: The BPT Diagram 215(4) 19 Radiative Trapping 219(10) 19.1 Escape Probability Approximation 219(2) 19.2 Homogeneous Static Spherical Cloud 221(1) 19.3 Example: CO J =I-O 222(2) 19.4 LVG Approximation: Hubble Flow 224(1) 19.5 Escape Probability for Turbulent Clouds 225(2) 19.6 CO I-O Emission as a Tracer of H2 Mass: CO "X-Factor" 227(2) 20 Optical Pumping 229(6) 20.1 UV Pumping by Continuum.
            • Starlight, Cosmic Rays, X Rays, and MHD Waves 337(1) 30.2 Photoelectric Heating by Dust 338(1) 30.3 Cooling: [C II] 158 μm, [OI] 63 μm, and Other Lines 339(2) 30.4 Two "Phases" for HI in the ISM 341(2) 30.5 Emission Spectrum of an HI Cloud 343(1) 31 Molecular Hydrogen 344(13) 31.1 Gas-Phase Formation of H2 344(1) 31.2 Grain Catalysis of H2 345(1) 31.3 Photodissociation of H2 346(2) 31.4 Self-Shielding 348(1) 31.5 Excitation of Vibration and Rotation by UV Pumping 349(1) 31.6 Rotational Level Populations 350(2) 31.7 Structure of a Photodissociation Region 352(4) 31.8 Dense PDRs 356(1) 32 Molecular Clouds: Observations 357(16) 32.1 Taxonomy and Astronomy 357(5) 32.2 Star Counts 362(1) 32.3 Molecular Radio Lines 362(1) 32.4 FIR Emission from Dust 363(1) 32.5 γ rays 364(1) 32.6 Compact, Ultracompact, and Hypercompact HII Regions 365(1) 32.7 IR Point Sources 366(1) 32.8 Masers 366(1) 32.9 Size-Linewidth Relation in Molecular Clouds 366(3) 32.10 Magnetic Fields in Molecular Clouds 369(2) 32.11 Energy Dissipation in Molecular Clouds 371(2) 33 Molecular Clouds: Chemistry and Ionization 373(8) 33.1 Photoionization and Photodissociation of Molecules 375(1) 33.2 Ion-Molecule Chemistry in Cold Gas 376(3) 33.3 The CH+ Problem 379(2) 34 Physical Processes in Hot Gas 381(8) 34.1 Radiative Cooling 381(3) 34.2 Radiative Cooling Time 384(1) 34.3 Thermal Conduction 385(1) 34.4 Cloud Evaporation in Hot Gas 386(1) 34.5 Conduction Fronts 387(2) 35 Fluid Dynamics 389(8) 35.1 Mass Conservation 389(1) 35.2 Conservation of Momentum: MHD Navier-Stokes Equation 390(2) 35.3 Heating and Cooling 392(1) 35.4 Electrodynamics in a Conducting Fluid: Flux-Freezing 393(2) 35.5 Virial Theorem 395(2) 36 Shock Waves 397(15) 36.1 Sources of Interstellar Shocks 397(1) 36.2 Jump Conditions: Rankine-Hugoniot Relations 398(6) 36.3 Cooling Time and Cooling Length 404(1) 36.4 Collisionless Shocks 404(2) 36.5 Electron Temperature 406(1) 36.6 Two-Fluid MHD Shocks in Low Fractional Ionization Gas 406(6) 37 Ionization/Dissociation Fronts 412(10) 37.1 Ionization Fronts: R-Type and D-Type 412(4) 37.2 Expansion of an HII Region in a Uniform Medium 416(3) 37.3 Photodissociation Fronts 419(3) 38 Stellar Winds 422(7) 38.1 Winds from Hot Stars: Stellar Wind Bubbles 422(4) 38.2 Winds from Cool Stars 426(1) 38.3 Stellar Wind Bow-Shock 427(2) 39 Effects of Supernovae on the ISM 429(11) 39.1 Evolution of a Supernova Remnant in a Uniform ISM 429(6) 39.2 Overlapping of SNRs 435(1) 39.3 Supernova Remnants in an Inhomogeneous Medium 436(1) 39.4 Three-Phase Model of the ISM 437(3) 40 Cosmic Rays and.
            • 229(2) 20.2 Infrared Pumping: OH 231(1) 20.3 UV Pumping by Line Coincidence: Bowen Fluorescence 232(3) 21 Interstellar Dust: Observed Properties 235(13) 21.1 Interstellar Extinction 236(3) 21.2 Parametric Fits to the Extinction Curve 239(1) 21.3 Polarization by Interstellar Dust 240(2) 21.4 Scattering of Starlight by Interstellar Dust 242(1) 21.5 Size Distribution of Interstellar Dust 243(1) 21.6 Purcell Limit: Lower Limit on Dust Volume 243(3) 21.7 Infrared Emission 246(1) 21.8 Luminescence 247(1) 22 Scattering and Absorption by Small Particles 248(15) 22.1 Cross Sections and Efficiency Factors 248(1) 22.2 Dielectric Function and Refractive Index 249(2) 22.3 Electric Dipole Limit: Size <λ 251(1) 22.4 Limiting Behavior at Long Wavelengths 252(1) 22.5 Sizes Comparable to Wavelength: Mie Theory 253(3) 22.6 Nonspherical Particles 256(2) 22.7 Interstellar Grains 258(5) 23 Composition of Interstellar Dust 263(22) 23.1 Abundance Constraints 263(3) 23.2 Presolar Grains in Meteorites 266(1) 23.3 Observed Spectral Features of Dust 267(4) 23.4 Silicates 271(3) 23.5 Polycyclic Aromatic Hydrocarbons 274(3) 23.6 Graphite 277(1) 23.7 Diamond 278(1) 23.8 Amorphous Carbons, Including Hydrogenated Amorphous Carbon 278(1) 23.9 Fullerenes 278(1) 23.10 Models for Interstellar Dust 279(6) 24 Temperatures of Interstellar Grains 285(11) 24.1 Heating and Cooling of "Classical" Dust Grains 285(5) 24.2 Heating and Cooling of Ultrasmall Dust Grains: Temperature Spikes 290(3) 24.3 Infrared Emission from Grains 293(2) 24.4 Collisionally Heated Dust 295(1) 25 Grain Physics: Charging and Sputtering 296(8) 25.1 Collisional Charging 296(1) 25.2 Photoelectric Emission 297(2) 25.3 Grain Charging in the Diffuse ISM 299(1) 25.4 Secondary Electron Emission 299(2) 25.5 Electron Field Emission 301(1) 25.6 Ion Field Emission and Coulomb Explosions 302(1) 25.7 Sputtering in Hot Gas 302(2) 26 Grain Dynamics 304(11) 26.1 Translational Motion 304(3) 26.2 Rotational Motion 307(3) 26.3 Alignment of Interstellar Dust 310(5) 27 Heating and Cooling of H II Regions 315(11) 27.1 Heating by Photoionization 315(2) 27.2 Other Heating Processes 317(2) 27.3 Cooling Processes 319(3) 27.4 Thermal Equilibrium 322(2) 27.5 Emission Spectrum of an H II Region 324(1) 27.6 Observed Temperatures in H II Regions 325(1) 28 The Orion H II Region 326(5) 28.1 Trapezium Stars 326(1) 28.2 Distribution of Ionized Gas 327(1) 28.3 Orion Bar 328(1) 28.4 Gas Kinematics 328(2) 28.5 PIGS, Proplyds, and Shadows 330(1) 29 H I Clouds: Observations 331(6) 29.1 21-cm Line Observations 331(1) 29.2 Distribution of the H I 332(1) 29.3 Zeeman Effect 333(2) 29.4 Optical and UV Absorption Line Studies 335(1) 29.5 Infrared Emission 335(2) 30 H I Clouds: Heating and Cooling 337(7) 30.1 Heating.
            ISBN
            • 9780691122137 ((hardback ; : alk. paper))
            • 069112213X ((hardback ; : alk. paper))
            • 9780691122144 ((pbk. ; : alk. paper))
            • 0691122148 ((pbk. ; : alk. paper))
            LCCN
            2010028285
            OCLC
            649926225
            Statement on language in description
            Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
            Other views
            Staff view