Extremophiles : sustainable resources and biotechnological implications / edited by Om V. Singh.

Format
Book
Language
English
Published/​Created
Hoboken, N.J. : Wiley-Blackwell, c2013.
Description
xxiii, 429p. : ill. (some col.) ; 27cm.

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Lewis Library - Stacks QR100.9 .E987 2013 Browse related items Request

    Details

    Subject(s)
    Summary note
    This remarkable text on extremophiles is part advanced introduction, desk-reference, and industrial research cookbook. Extremophiles are organisms that survive in extreme conditions, which may hold insights or direct products for ecological or industrial needs. Singh (biological and health sciences, U. of Pittsburgh) supplies an introduction, while dozens of contributors from academia and industry, contribute to 16 chapters. The chapters are written as modules for overview, with references, concluding remarks and suggestions for research/application at the end of each. The first two chapters introduce the molecular evolution of extremophiles and the methodologies for attaining them. Further chapters look at how to isolate, extract, and use halophilic microorganisms; the biotechnological applications of cold-adapted bacteria; ecology and biochemistry of thermophiles; applications in food production, biofuels, textile substrates, industrial recovery of metals, polymer production, and radiation resistance. The chapters are self-contained and do not need to be read in a particular order. The volume is intended for those with an advanced undergraduate graduate level comprehension of chemistry, biology, ecology. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).
    Notes
    Includes bibliographical references and index.
    Bibliographic references
    Includes bibliographical references and index.
    Contents
    • Machine generated contents note: 1. Molecular Evolution of Extremophiles / Sanjukta Patra
    • 1.1. Introduction
    • 1.2. Molecular Evolution of Thermophiles
    • 1.2.1. Habitat
    • 1.2.2. Cellular Organization
    • 1.2.3. Genome
    • 1.2.4. Proteome
    • 1.3. Molecular Evolution of Psychrophiles
    • 1.3.1. Habitat
    • 1.3.2. Cellular Organization
    • 1.3.3. Genome
    • 1.3.4. Proteome
    • 1.4. Molecular Evolution of Halophiles
    • 1.4.1. Habitat
    • 1.4.2. Cellular Organization
    • 1.4.3. Genome
    • 1.4.4. Proteome
    • 1.5. Molecular Evolution of Alkaliphiles
    • 1.5.1. Habitat
    • 1.5.2. Cellular Organization
    • 1.5.3. Genome
    • 1.5.4. Proteome
    • 1.6. Molecular Evolution of Acidophiles
    • 1.6.1. Habitat
    • 1.6.2. Cellular Organization
    • 1.6.3. Genome
    • 1.6.4. Proteome
    • 1.7. Molecular Evolution of Barophiles
    • 1.7.1. Habitat
    • 1.7.2. Cellular Organization
    • 1.7.3. Genome
    • 1.7.4. Proteome
    • 1.8. Engineering Extremophiles
    • 1.8.1. Microbiology
    • 1.8.2. Molecular Biology
    • 1.8.3. Bioinformatics
    • 1.9. Case Studies
    • 1.9.1. Biofuel Production
    • 1.9.2. Bioremediation
    • 1.9.3. Pesticide Biodegradation
    • 1.9.4. Escherichia coli: A Candidate Extremophile
    • 1.9.5. Oil-Spill-Cleaning Bacteria
    • 1.9.6. Potential Applications and Benefits
    • 1.10. Implications of Engineered Extremophiles on Ecology, Environment, and Health
    • 1.11. Conclusions and Recommendations
    • References
    • 2. Attaining Extremophiles and Extremolytes: Methodologies and Limitations / Sanjukta Patra
    • 2.1. Introduction
    • 2.2. Extremophiles: Types and Diversity
    • 2.2.1. Thermophiles
    • 2.2.2. Psychrophiles
    • 2.2.3. Halophiles
    • 2.2.4. Alkaliphiles
    • 2.2.5. Acidophiles
    • 2.2.6. Barophiles
    • 2.3. Extremolytes
    • 2.3.1. Production and Purification of Extremolytes
    • Note continued: 2.3.2. Detection, Identification, and Quantification of Extremolytes
    • 2.3.3. Limitations
    • 2.4. Conclusions
    • 3. Strategies for the Isolation and Cultivation of Halophilic Microorganisms / Aharon Oren
    • 3.1. Introduction
    • 3.2. Thalassohaline and Athalassohaline Hypersaline Environments
    • 3.3. Case Studies
    • 3.3.1. Isolation of Aerobic Chemoheterotrophic Archaea from Solar Salterns
    • 3.3.2. Magnesium-Requiring and Magnesium-Tolerant Archaea from the Dead Sea
    • 3.3.3. Isolation of Acidophilic Halophilic Archaea
    • 3.3.4. Isolation of Unusual Anaerobic Halophiles from Deep-Sea Brines
    • 3.3.5. Isolation of Polyextremophilic Anaerobic Halophiles
    • 3.3.6. Isolation of Halophilic Microorganisms Associated with Plants and Animals
    • 3.3.7. Isolation of Halophilic Archaea from Low-Salt Environments
    • 3.4. Upper Salinity Limits of Different Types of Energy Generation
    • 3.5. Final Comments
    • 4. Halophilic Properties and Their Manipulation and Application / Masao Tokunaga
    • 4.1. Introduction
    • 4.2. Industrial Applications of Halophilic Organisms and Their Proteins
    • 4.3. Extreme and Moderate Halophiles and Their Proteins
    • 4.4. Generation of Low-Salt Stable Extreme-Halophilic Proteins
    • 4.5. Interconversion of Halophilic and Nonhalophilic Proteins
    • 4.5.1. Dimer-Tetramer Conversion of HaNDK and PaNDK
    • 4.5.2. Generation of Halophilic PaNDK
    • 4.6. Soluble Expression of Recombinant Proteins
    • 4.7. Natively Unfolded Proteins
    • 4.8. Organic Solvent Tolerance
    • 5. Features and Applications of Halophilic Archaea / Ximena C. Abrevaya
    • 5.1. Introduction
    • 5.2. General Features
    • 5.2.1. Morphology
    • 5.2.2. Metabolism
    • 5.2.3. Osmoadaptation
    • ^ 5.2.4. Natural Habitats
    • 5.2.5. Pigments
    • 5.2.6. Genetics
    • 5.3. Applications of Halophilic Archaea
    • Note continued: 5.3.1. Production of Enzymes
    • 5.3.2. Production of Biopolymers
    • 5.3.3. Uses in Fermented Foods
    • 5.3.4. Uses in Bioremediation and Xenobiotic Degradation
    • 5.3.5. Uses in Solar Salt Production
    • 5.3.6. Carotenoid Derivative Production and Biotechnological Uses
    • 5.3.7. Other Applications
    • 5.3.8. Applications in Astrobiology-Related Research
    • 5.4. Concluding Remarks
    • Acknowledgment
    • 6. Biotechnological Applications of Cold-Adapted Bacteria / Cristina Cid
    • 6.1. Introduction
    • 6.2. Molecular Mechanisms of Adaptation to Cold Environments
    • 6.3. Exopolysaccharides
    • 6.4. Lipids
    • 6.5. Proteins
    • 6.5.1. Stable Proteins at Cold Temperatures
    • 6.5.2. Cold-Adapted Enzymes
    • 6.6. Biotechnological Applications of Cold-Adapted Enzymes
    • 6.6.1. Detergents
    • 6.6.2. Food Industry
    • 6.6.3. Pharmaceutical Industry
    • ^ 6.6.4. Biofuels
    • 6.6.5. Molecular Biology
    • 6.7. Biodegradation and Bioremediation in Cold Environments
    • 6.7.1. Biodegradation of Petroleum
    • 6.7.2. Biodegradation of Phenolic Compounds
    • 6.7.3. Bioremediation of Radionuclides, Halogenated Organics, and Nitramines
    • 6.7.4. Treatment of Acid Mine Drainage
    • 6.8. Conclusions
    • Acknowledgments
    • Webliography
    • 7. Ecology and Biotechnology of Extremophilic Microorganisms, Particularly Anaerobic Thermophiles / Francesco Canganella
    • 7.1. Introduction
    • 7.2. Thermophiles
    • 7.2.1. Thermophilic Anaerobes and Clostridia
    • 7.2.2. Ecology of Thermophiles
    • 7.2.3. Ecology of Extreme Thermophilic Archaea
    • 7.2.4. Ecology of Extreme Thermophilic Bacteria
    • 7.2.5. Biotechnology of Thermophiles
    • 7.3. Acidophiles
    • 7.3.1. Acidophilic Ecosystems
    • 7.4. Alkaliphiles
    • 7.4.1. Alakalyphilic Ecosystems
    • ^ 7.4.2. Biotechnology of Acidophilic and Alkaliphilic Microorganisms
    • 7.5. Halophiles
    • Note continued: 10.3.1. Thermotolerant Microorganisms for Ethanol Production
    • 10.3.2. Improvements in Thermophilic Ethanol Producers
    • 10.3.3. Process Development and Thermophiles
    • 10.4. Future Perspectives and Challenges
    • 10.5. Conclusions
    • 11. Ecofriendly Aspects of the Use of Extremophilic Enzymes in Textile Substrates / Sandhya Mishra
    • 11.1. Introduction
    • 11.2. Biopolymeric Fibers
    • 11.3. Extremophilic Enzymes and Their Use in the Textile Industry
    • 11.3.1. Amylases
    • 11.3.2. Cellulases
    • 11.3.3. Pectinases
    • 11.3.4. Catalases
    • 11.3.5. Proteases
    • 11.3.6. Esterases
    • 11.3.7. Laccases
    • 11.4. Utilization of Extremophilic Enzymes in Textile Wet Processing
    • 11.4.1. Fiber Preparation
    • 11.4.2. Fabric Preparation
    • 11.4.3. Enzymes in Biopreparation of Textiles
    • 11.5. Finishing with Extremophilic Enzymes
    • 11.5.1. Biopolishing of Cotton
    • 11.5.2. Bio-Denim Washing
    • 11.5.3. Biopolishing of Jute
    • 11.5.4. Biopolishing of Wool
    • 11.5.5. Biopolishing of Silk
    • 11.5.6. Biopolishing of Lyocell
    • 11.6. Role of Enzymes in Textile After-Care
    • 11.7. Role of Enzymes in Effluent Treatment of Textiles
    • 11.8. Conclusions
    • 12. Use of Extremophilic Microorganisms in the Industrial Recovery of Metals / Carlos A. Jerez
    • 12.1. Introduction
    • 12.2. Biomining Extremophiles and Their Industrial Applications
    • 12.3. Molecular Studies in Acidophilic Biomining Microorganisms
    • 12.4. Microbial Resistance to Acid and Metals
    • 12.4.1. Acidophilic Bacteria
    • 12.4.2. Acidophilic Archaeons
    • 13. Bacterial Polymers Produced by Extremophiles: Biosynthesis, Characterization, and Applications of Exopolysaccharides / Poli Annarita
    • 13.1. Introduction
    • 13.2. EPS Produced by Extremophilic Bacteria
    • Note continued: 13.3. Examples of Proposed EPS Biosynthesis from Extremophiles
    • 13.4. Physicochemical Investigations for Potential Applications
    • 14. Biomedical Applications of Exopolysaccharides Produced by Microorganisms Isolated From Extreme Environments / Victoria Bejar
    • 14.1. Introduction
    • 14.2. Chemical Composition and Structure of EPSs
    • 14.3. Physical Properties of EPSs
    • 14.4. Biological Functions of EPSs
    • 14.5. Exopolysaccharides Deriving from Extremophilic Organisms
    • 14.6. Clinical Applications of EPSs
    • 14.7. Exopolysaccharides of Halophilic Microorganisms
    • 14.7.1. Halomonas stenophila B-100
    • 14.8. Concluding Remarks
    • 15. Biosynthesis of Extremolytes: Radiation Resistance and Biotechnological Implications / Om V. Singh
    • 15.1. Introduction
    • 15.2. Biotechnological Implications of Extremolytes
    • 15.2.1. Industrial Implications
    • 15.2.2. Therapeutic Implications
    • 15.3. Fermentative Production of Extremolytes
    • 15.3.1. Microorganisms: An Asset in Extremolyte Fermentation
    • 15.3.2. Evaluation of the Fermentation Process
    • 15.4. Commercialization of Extremolytes and Extremozymes
    • 15.5. Product Recovery
    • 15.6. Conclusions
    • 16. Smart Therapeutics From Extremophiles: Unexplored Applications and Technological Challenges / Ajeet Singh
    • 16.1. Introduction
    • 16.2. Extremolytes as Protein Protectants
    • 16.3. Extremolytes as Cell Protectants
    • 16.3.1. Mycosporine-like Amino Acids
    • 16.3.2. Bacterioruberin
    • 16.3.3. Sphaerophorin and Pannarin
    • 16.4. Novel Therapeutics in the Developmental Stage
    • 16.5. Homeland Security and Military Medicine
    • 16.6. Technological Gaps in Therapeutic Product Development Using Extremophiles
    • 16.7. Conclusions.
    ISBN
    • 1118103009 ((cloth))
    • 9781118103005 ((cloth))
    LCCN
    2012011093
    OCLC
    1027941716
    Statement on language in description
    Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
    Other views
    Staff view